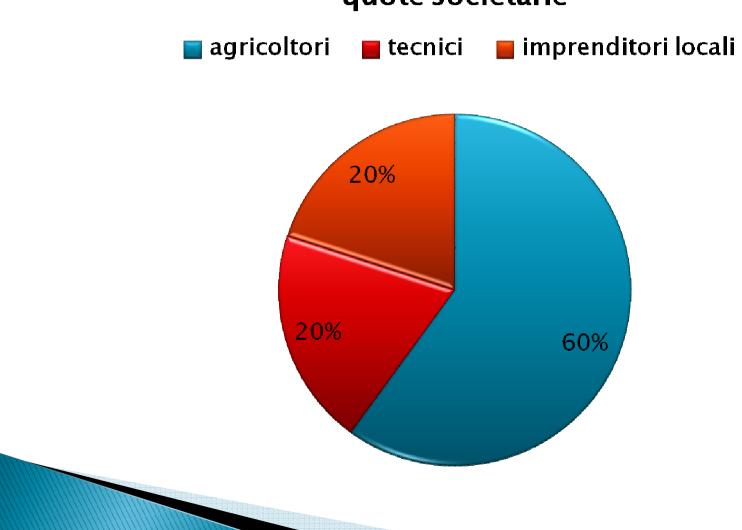
La realtà della Komaros Agroenergie

La filiera locale dell'Olio Vegetale Puro

PRESENTAZIONE AZIENDALE


Il nome dell'azienda è stato volutamente stato volutamente scelto per segnalare il forte legame con il territorio, infatti viene dal greco κόμαρος (pron. kòmaros) che tradotto vuol dire Ciliegio di mare, comunemente detto corbezzolo, un albero mediterraneo molto diffuso nei boschi del Conero promontorio a Conero, promontorio a picco sul Mar Adriatico e simbolo di Ancona e della Regione Marche.

Struttura aziendale

Il progetto "Helianthus 1"

Il progetto che ha impegnato i nostri primi anni di attività è stato l'Helianthus 1, ovvero l'installazione di un impianto di cogenerazione della potenza di 420 kWe, compiuta grazie alla realizzazione completa della filiera agroenergetica locale dell'OVP (Olio Vegetale Puro)

PROGETTO HELIANTHUS

La KOMAROS AGROENERGIE s.r.l. e il Comune di Ancona, mediante l'attiva partecipazione di alcune aziende agricole marchigiane, realizzano un progetto volto a produrre energia rinnovabile derivante dalla coltivazione del girasole. Dalla pressatura meccanica a freddo del seme si ottengono panello proteico e olio. Il primo viene destinato all'alimentazione zootecnica, mentre l'olio di girasole serve per alimentare questa centrale di cogenerazione, in modo tale da poter produrre energia elettrica "pulita" da immettere nella rete nazionale e calore necessario al riscaldamento del Palarossini.

PRESSATURA SEMI ED ESTRAZIONE OLIO

PANELLO PROTEICO PER ALLEVAMENTI ZOOTECNICI

OLIO DI GIRASOLE

Le strutture interessate alle fasi di spremitura sono tre:

1 - Silos ricevimento sementi (Collettore) previa pesatura e analisi campione (umidità e impurità).

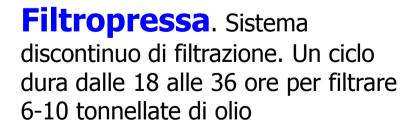
- 2 Capannone spremitura (TRASFORMATORE -DEPOSITO FISCALE)
- 3 Capannone deposito panello proteico → DESTINAZIONE ZOOTECNICA (Controllo ASUR perché in quanto mangime sottoposto alle norme della filiera FOOD)

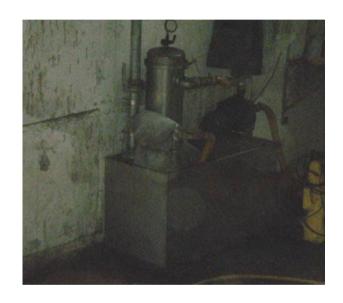
L'impianto di spremitura è attualmente predisposto per lavorare in modo automatico e continuativo ed è costituito da:

- Macchina pulitrice
- Silos stoccaggio primario del seme
- Silos stoccaggio secondario seme
- Tre presse (capacità totale oraria 7 q.li)
- √ Vasca raccolta olio
- Sistema filtrante (FILTRO PRESSA + FILTRO A CALZA 1 micron)
- Sistema controllo rese

Stoccaggio seme

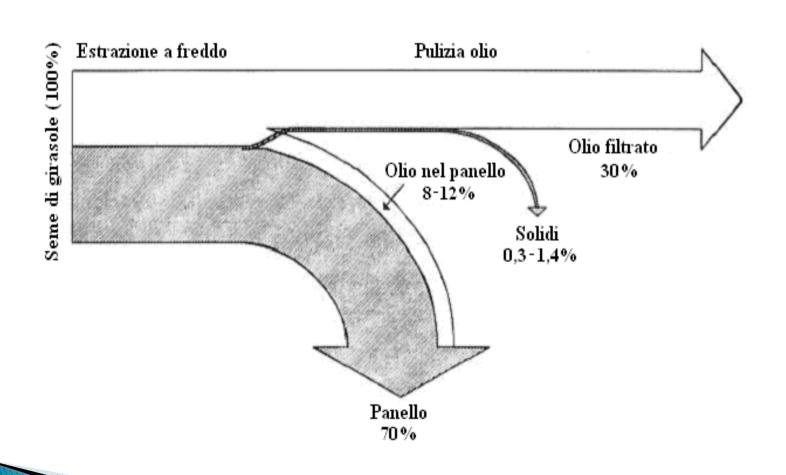
Pulitore


Polmone di contenimento



Modulo di spremitura

Filtro a calza. All'interno del cilindro di acciaio è presente un sacco con tessitura 1 micron dove viene fatto passare l'olio alla pressione di 2-3 atm ed eliminate eventuali impurità.



Controllo produttività

Linea aria compressa per destinare il panello allo stoccaggio

Estrazione olio vegetale a freddo

Fase di estrazione. Confronto tra varietà convenzionali e alto oleiche

		CONVENZIONALE	ALTOLEICO
SEME	Kg/h	156,16	151,91
PANELLO	Kg/h	97,35	95,42
OLIO	Kg/h	56,81	54,16
OLIO+PANELLO	Kg/h	154,16	149,89
PERDITA PRODOTTO	Kg/h	2	2,32
PERDITA PRODOTTO	%	1,29	1,48
RESA OLIO GREZZO	%	36,67	35,73
RESA PANELLO	%	62,34	62,8

Fonte Sibe Srl - 2008/2009

Caratterizzazione energetica dell'olio filtrato

Campione	PCS (kJ/kg)	PCI (kJ/kg)	Viscosità (cSt)	Contenuto H ₂ O (ppm)	Acidità (mgKOH/g)	Numero di Iodio (gI ₂ /100 g)
Varietà Convenzionale	39.399	37.064	34,51	564,44	1,45	122,05
Varietà Altoleica	39.597	37.005	39,60	477,69	2,64	92,02

Fonte Sibe Srl – 2008/2009

Considerazioni sulla caratterizzazione energetica dell'olio

PARAMETRO	OLIO ANALIZZATO	SPECIFICHE MAN	SPECIFICHE WARTSILA
PCI (kJ/kg)	37000	> 35000	/
Viscosità (cSt a 40 C)	35	< 40	< 100
Contenuto di H2O (ppm)	564	< 5000	< 2000
Acidità (mgKOH/g)	1,45	< 4	< 5
Numero di iodio (gI2/100kg)	122,46	/	< 120

Fonte Sibe Srl - 2008/2009

Composizione acidica dell'olio filtrato

Composizione acidica (%)	Varietà Convenzionale	Varietà Altoleica
Acido Palmitico C16	5,79	3,90
Acido Palmitoleico C16-1	0,22	0,27
Acido Stearico C18	3,01	2,44
Acido Oleico C18-1	35,80	77,88
Acido Linoleico C18-2	53,83	14,19
Acido Linolenico C18-3	0,06	0,42
Acido Arachico C20	0,20	0,66
Acido Gadoleico C20-1	0,13	0,14
Acido Behenico C22	0,58	0,24
Altri	0,37	0,25

Fonte Sibe Srl - 2008/2009

Caratterizzazione alimentare del panello di girasole

Campione	Sostanza secca (%)	Umidità (%)	Estratto Etereo (%)	Proteina grezza (%)	Ceneri (%)	Fibra grezza (%)	NDF (% su s.s.)	ADF (% su s.s.)	ADL (% su s.s.)
Varietà Convenzionale	89,56	10,23	11,46	25,86	6,07	25,53	42,67	31,65	15,17
Varietà Altoleica	91,76	8,20	6,71	25,56	5,38	21,79	56,72	34,19	10,91

^[1] Fibra residua al detergente neutro costituita da cellulosa, emicellulose, lignina

Fonte Sibe Srl - 2008/2009

^[2] Fibra residua al detergente acido costituita da cellulosa, lignina, cutina e silice. La differenza tra NDF-ADF dà una stima delle emicellulose.

^[3] Lignina al netto delle ceneri

Caratterizzazione energetica del panello di girasole

Parametro	Unità di misura	Varietà Convenzionale	Varietà Altoleica
Umidità	% su t.q.	8,7	8,1
Ceneri	% su s.s.	6,1	5,5
PCS	kJ/kg di s.s.	22.721	22.841
PCI	kJ//kg di s.s.	21.186	21.153
PCN	kJ/kg di t.q.	19.106	19.252
С	% su s.s.	52,39	52,54
Н	% su s.s.	7,16	7,94
N	% su s.s.	5,06	4,49
S	% su s.s.	0,21	0,18
O	% su s.s.	28,99	29,41
Cl	% su s.s.	0,17	0,17

Fonte Sibe Srl - 2008/2009

Punti critici tecnici della fase di spremitura

- Buona qualità del prodotto di partenza
- Pulizia obbligatoria
- Umidità compresa tra 7% e 11%
- Locali per la conservazione del seme e del panello
- Utilizzo del panello in un tempo max di 60-90 gg in inverno e 30-40 gg d'estate
- Necessità di valorizzare il panello rispetto alle farine disoleate → zootecnia locale

LA CENTRALE DI COGENERAZIONE (OE)

Analisi delle emissioni al camino

Parametro	mg/Nm3 misurati	mg/Nm3 riferiti al 5% O2	Valori imposti dal DLgs 152/06 (mg/Nm3 riferiti al 5% O2)
СО	144	190	650
NO _X	1925	2545	4000

Temperatura fumi: 455°C

Fonte Sibe Srl - 2008/2009

Risultati dopo due anni di attivita'

(05-05-08/31-10-10)

Anno	Ore di lavoro	kWh di cessione	Media ore (kWh/h)	Consumi Totali (Tonn)	Consumi specifici (gr/kWh)	kWh di immissione
2008	2381	825852	352 (336)	199,371	241	796535
2009	6556	2645040	400 (380)	649,026	245	2493209
2010	5688	2205354	387 (370)	540,337	245	2101844
TOTALE	14625	5676246	388 (369)	1.388,734	245	5391588

Situazione normativa

Finalmente, dopo 3 anni di attesa si può considerare concluso l'iter applicativo della Legge 296/06 e 244/07 (Finanziaria 2008)

Provvedimento	Anno	Novità introdotta
DM Mse 18.12.2008	2008	Modifica ai valori della Tariffa Omnicomprensiva
Legge 99/09	2009	Nuova modifica ai valori della TO
DM Mipaaf 02.03.2010	2010	Attuazione legge tracciabilità biomasse per produzione EE
Circolare Mipaaf 5520 del 31.03.2010	2010	Spiegazione del sistema di tracciabilità dell'OVP (inizio fase transitoria)
Circolare Agea 473 del 21.06.2010	2010	Disposizioni applicative del sistema di tracciabilità dell'OVP
Circolare Agea 735 del 29.10.2010	2010	Procedura di supporto alla tracciabilità dell'OVP (manuale operativo per l'utilizzo del portale SIAN)

Gli incentivi all'OVP ad oggi

Esercizio commerciale dell'impianto	Combustibile	Potenza < 1 MW	Potenza > 1 MW
01.01.2008 - 15.08.2009	OVP tracciato	0,28	Coeff. 1,8
01.01.2008 - 15.08.2009	OVP non tracciato	0,22	Coeff. 1,3
> 16.08.2009	OVP tracciato	0,28 ??????	Coeff. 1,8 ?????
> 16.08.2009	OVP non tracciato	0,18 ??????	Coeff. 1,1 ?????

Problematiche realizzative delle filiere agroenergetiche

- Iter autorizzativo per installare gli impianti complicato e molto lungo
- Sovrapposizione a livello istituzionale dei ruoli e dei pareri da esprimere
- Lentezza a livello amministrativo locale nell'applicazione dei regolamenti e delle direttive Internazionali, europee e nazionali (ad es. A quando il recepimento delle linee guida nazionali espresse in Conferenza Stato-Regioni?)
- Incertezza sul valore futuro della TO per le biomasse di origine agricola (revisione triennale??)
- Controlli e regolamentazioni forse eccessivi (ad ogni modo la telematizzazione del settore doganale e degli aspetti inerenti la tracciabilità agevoleranno gli operatori)

Criticità e proposte

- Emanazione di leggi e linee guida, inerenti le modalità di autorizzazione ed installazione degli impianti, chiare ed efficaci e, soprattutto, recepimento rapido da parte degli enti locali
- La salvaguardia dell'ambiente e del territorio è prioritaria per chi investe nel settore delle rinnovabili, ma altrettanto importante è sapere quali sono i paletti autorizzativi entro cui muoversi e la certezza della tempistica di autorizzazione
- Applicazione certa e definitiva delle leggi esistenti (Tariffa omnicomprensiva o CV maggiorati per gli impianti alimentati con le biomasse di origine agricola)
- Migliorare ulteriormente il sistema di incentivazione delle biomasse, ad esempio prevedendo scaglioni di incentivo crescenti per quegli impianti che, oltre alla produzione di EE, ottimizzano anche le fasi di utilizzo del calore (risparmio energetico)

Attività future della Komaros

- Campagna di forte sensibilizzazione e ulteriore coinvolgimento degli agricoltori nell'ambito della filiera: l'obiettivo immediato è raggiungere i 1.500-2.000 ha di contratti per bioenergia;
- Ottimizzazione delle fasi di spremitura;
- Valorizzazione del panello proteico;
- Partecipazione a programmi sperimentali volti a migliorare e ad accrescere il nostro know-how (ricerca varietale, utilizzo a scopo energetico dei sottoprodotti, ecc.)
- Installazione di altre microcentrali alimentate ad olio vegetale
- Consulenza e supporto tecnico per altre realtà agroindustriali interessate a ripetere la nostra esperienza.

Conclusioni

- La filiera agroenergetica dell'OVP è tecnicamente sostenibile come dimostrano i dati in nostro possesso
- □ Filiera agroenergetica dell'OVP, anche alla luce dell'emanazione della Circolare ministeriale del 31.03.2010 e della Circolare ACIU 2010.473, dimostra finalmente anche la sua validità economica
- Serve ancora maggiore chiarezza normativa per dare stabilità al settore, sia per ciò che concerne gli investimenti realizzabili, sia per ciò che riguarda la creazione di occupazione.

Contatti

- Dott. Agr. Massimiliano Mazzoni
- KOMAROS AGROENERGIE SRL
- Via Molinaccio, 4
- ▶ 60027 Osimo (AN)
- ▶ Tel/fax: 071-7231000/1
- ▶ E-mail: <u>m.mazzoni@komarosagroenergie.it</u>
- Web: www.komarosagroenergie.it